资源类型

期刊论文 597

年份

2023 77

2022 55

2021 53

2020 52

2019 56

2018 40

2017 18

2016 25

2015 36

2014 30

2013 24

2012 20

2011 15

2010 17

2009 21

2008 13

2007 24

2006 1

2005 3

2004 1

展开 ︾

关键词

印染废水 2

合成生物学 2

吸附 2

2

Tetrasphaera 1

ATP荧光检测 1

CO2捕集 1

Cascaded 型检测器 1

H2S 1

MOF基催化剂 1

N 1

N-二乙基乙醇胺 1

N3C空位 1

P4 1

PET酶 1

PET降解 1

PH3 1

PM2.5脱除 1

RGB-D 1

展开 ︾

检索范围:

排序: 展示方式:

Tetrasphaera富集的强化生物除磷微生物组的时间动态和效能关联 Article

王慧, 王玉波, 张国庆, 赵泽, 鞠峰

《工程(英文)》 2023年 第29卷 第10期   页码 168-178 doi: 10.1016/j.eng.2022.10.016

摘要:

基于16S rRNA扩增子测序技术对全球污水处理厂(WWTP)强化生物除磷(EBPR)工艺中微生物群落的研究表明Tetrasphaera是丰度最高的聚磷菌(PAOs)。然而,目前对于Tetrasphaera 如何在 EBPR 中进行选择性富集尚不清楚。本文通过“自上而下”的方法利用复合碳源和低浓度烯丙基硫脲构建了Tetrasphaera富集的EBPR微生物组,其16S序列的丰度在第 113 天可达 40%。,并且显着降低了氨氧细菌Nitrosomonas和PAOs的潜在竞争者 Brevundimonas Paracoccus 的相对丰度,促进了 EBPR16S rRNA 基因分析表明,体系中的EBPR-ASV0001与 Tetrasphaera japonica 的亲缘关系最为相近,其可能代表了一种新的PAOs。

关键词: 强化生物除磷(EBPR    聚磷微生物 (PAOs)     Tetrasphaera     微生物组     磷回收    

effect of temperature variation on the competition between PAOs and GAOs during acclimation period of an EBPR

Nanqi REN, Han KANG, Xiuheng WANG, Nan LI

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 277-282 doi: 10.1007/s11783-010-0226-x

摘要: Sequencing batch reactor (SBR) for enhanced biological phosphorus removal (EBPR) processes was used to investigate the impact of the temperature shock on the competition between phosphorus-accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) in start-up stage. During the 34 days operation, SBR was set with temperature variation(0–5 d, 22±1°C; 6–13 d, 29±1°C; 14–34 d, 14±1°C). PAOs and GAOs were analyzed by fluorescent in situ hybridization (FISH), and intracellular polyphosphate granules were stained by Neisser-stain. The results showed that the influence of temperature shock on PAOs’ abundance was more serious than that on GAOs in the enriching process. Under sudden and substantially temperature variation, from 22±1°C to 29±1°C and then to 14±1°C, the domination of PAOs was deteriorated. After temperature shock, PAOs’ competitive advantages at low temperature that concluded in other study did not appear in our study. As mesophilic, GAOs (indicated by and ) were more temperature adaptive and better grew and took the domination at 14±1°C in the end. In the competition process, organisms of tetrad forming organisms (TFOs)-like shape which were considered as typical GAOs, were observed. With the evidence of poly-P granules containing by Neisser-straining and result of FISH, these organisms of TFOs-like shape were better to be assumed as adaption state or a special self-protecting shape of PAOs.

关键词: fluorescent in situ hybridization (FISH)     tetrad forming organisms (TFOs)     temperature variation     enhanced biological phosphorus removal (EBPR)    

Kinetic analysis of anaerobic phosphorus release during biological phosphorus removal process

DOU Junfeng, LIU Xiang, LUO Guyuan

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 233-239 doi: 10.1007/s11783-007-0040-2

摘要: Enhanced biological phosphorus removal (EBPR) is a commonly used and sustainable method for phosphorus removal from wastewater. Poly-β-hydroxybutyrate (PHB), polyphosphate, and glycogen are three kinds of intracellular storage polymers in phosphorus accumulation organisms. The variation of these polymers under different conditions has an apparent influence on anaerobic phosphorus release, which is very important for controlling the performance of EBPR. To obtain the mechanism and kinetic character of anaerobic phosphorus release, a series of batch experiments were performed using the excessively aerated sludge from the aerobic unit of the biological phosphorus removal system in this study. The results showed that the volatile suspended solid (VSS) had an increasing trend, while the mixed liquid suspended sludge (MLSS) and ashes were reduced during the anaerobic phosphorus release process. The interruption of anaerobic HAc-uptake and phosphorus-release occurs when the glycogen in the phosphorus-accumulating-organisms is exhausted. Under the condition of lower initial HAc-COD, HAc became the limiting factor after some time for anaerobic HAc uptake. Under the condition of higher initial HAc-COD, HAc uptake was stopped because of the depletion of glycogen in the microorganisms. The mean ratio of ΔρP/Δρ, Δρ/ΔρPHB, ΔρP/ΔCOD, and ΔρPHB/ΔCOD was 0.48, 0.50, 0.44, and 0.92, respectively, which was nearly the same as the theoretical value. The calibrated kinetic parameters of the HAc-uptake and phosphorus-release model were evaluated as follows: Q was 164 mg/(g °h), Q was 69.9 mg/(g °h), K was 0.005, and KCOD was 3 mg/L. An apparently linear correlation was observed between the ratio of ΔρP/ΔCOD and pH of the solution, and the equation between them was obtained in this study.

关键词: interruption     process     ΔρP/Δρ     Enhanced biological     Poly-β-hydroxybutyrate    

Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by

Yandong Yang,Liang Zhang,Hedong Shao,Shujun Zhang,Pengchao Gu,Yongzhen Peng

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0911-0

摘要: EBPR and PN/A were combined to enhance nutrients removal from municipal wastewater. High effluent quality of 0.25 mg TP?L and 10.8 mg TN?L was obtained. Phosphorus and nitrogen removal was achieved in two separated units. A proper post-anoxic phase improved the nitrogen removal performance of PN/A unit. Conventional biological removal of nitrogen and phosphorus is usually limited due to the lack of biodegradable carbon source, therefore, new methods are needed. In this study, a new alternative consisting of enhanced biological phosphorus removal (EBPR) followed by partial nitritation-anammox (PN/A), is proposed to enhance nutrients removal from municipal wastewater. Research was carried out in a laboratory-scale system of combined two sequencing batch reactors (SBRs). In SBR1, phosphorus removal was achieved under an alternating anaerobic-aerobic condition and ammonium concentration stayed the same since nitrifiers were washed out from the reactor under short sludge retention time of 2–3 d. The remaining ammonium was further treated in SBR2 where PN/A was established by inoculation. A maximum of nitrogen removal rate of 0.12 kg N?m ?d was finally achieved. During the stable period, effluent concentrations of total phosphorus and total nitrogen were 0.25 and 10.8 mg?L , respectively. This study suggests EBPR-PN/A process is feasible to enhance nutrients removal from municipal wastewater of low influent carbon source.

关键词: Phosphorus removal     Partial nitrification     Anammox     Municipal wastewater    

Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies

Bin MA, Shuying WANG, Guibing ZHU, Shijian GE, Junmin WANG, Nanqi Ren, Yongzhen PENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 267-272 doi: 10.1007/s11783-012-0439-2

摘要: Denitrifying phosphorus accumulating organisms (DPAOs) using nitrite as an electron acceptor can reduce more energy. However, nitrite has been reported to have an inhibition on denitrifying phosphorus removal. In this study, the step-feed strategy was proposed to achieve low nitrite concentration, which can avoid or relieve nitrite inhibition. The results showed that denitrification rate, phosphorus uptake rate and the ratio of the phosphorus uptaken to nitrite denitrified (anoxic P/N ratio) increased when the nitrite concentration was 15 mg·L after step-feeding nitrite. The maximum denitrification rate and phosphorus uptake rate was 12.73 mg and 18.75 mg , respectively. These rates were higher than that using nitrate (15 mg·L ) as an electron acceptor. The maximum anoxic P/N ratio was 1.55 mg . When the nitrite concentration increased from 15 to 20 mg after addition of nitrite, the anoxic phosphorus uptake was inhibited by 64.85%, and the denitrification by DPAOs was inhibited by 61.25%. Denitrification rate by DPAOs decreased gradually when nitrite (about 20 mg·L ) was added in the step-feed SBR. These results indicated that the step-feed strategy can be used to achieve denitrifying phosphorus removal using nitrite as an electron acceptor, and nitrite concentration should be maintained at low level (<15 mg·L in this study).

关键词: denitrifying phosphate accumulating organisms (DPAOs)     denitrification     phosphorus uptake     nitrite     step-feed     enhanced biological phosphorus removal    

Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorusremoval in low dissolved oxygen systems

Hongjing LI, Yinguang CHEN

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 283-290 doi: 10.1007/s11783-010-0243-9

摘要: In this paper, a study was conducted on the effect of polyhydroxyalkanoates (PHA) and glycogen transformations on biologic nitrogen and phosphorus removal in low dissolved oxygen (DO) systems. Two laboratory-scale sequencing batch reactors (SBR1 and SBR2) were operating with anaerobic/aerobic (low DO, 0.15–0.45 mg·L ) configurations, which cultured a propionic to acetic acid ratio (molar carbon ratio) of 1.0 and 2.0, respectively. Fewer poly-3-hydroxybutyrate (PHB), total PHA, and glycogen transformations were observed with the increase of propionic/acetic acid, along with more poly-3-hydroxyvalerate (PHV) and poly-3-hydroxy-2-methyvalerate (PH2MV) shifts. The total nitrogen (TN) removal efficiency was 68% and 82% in SBR1 and SBR2, respectively. In the two SBRs, the soluble ortho-phosphate (SOP) removal efficiency was 94% and 99%, and the average sludge polyphosphate (poly-P) content (g·g-MLVSS ) was 8.3% and 10.2%, respectively. Thus, the propionic to acetic acid ratio of the influent greatly influenced the PHA form and quantity, glycogen transformation, and poly-P contained in activated sludge and further determined TN and SOP removal efficiency. Moreover, significant correlations between the SOP removal rate and the (PHV+ PH2MV)/PHA ratio were observed ( >0.99). Accordingly, PHA and glycogen transformations should be taken into account as key components for optimizing anaerobic/aerobic (low DO) biologic nitrogen and phosphorus removal systems.

关键词: low dissolved oxygen (DO)     biological nitrogen and phosphorus removal     polyhydroxyalkanoates (PHA)     glycogen    

Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process

Hongxun HOU, Shuying WANG, Yongzhen PENG, Zhiguo YUAN, Fangfang YIN, Wang GAN

《环境科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 106-111 doi: 10.1007/s11783-009-0005-8

摘要: The anaerobic-anoxic oxidation ditch (A /O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal, and enhance the denitrifying phosphorus removal in the A /O OD process, a pilot-scale A /O OD plant (375 L) was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, , , and TN were 88.2%, 92.6%, 87.8%, and 73.1%, respectively, when the steady state of the pilot-scale A /O OD plant was reached during 31-73 d, demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with as the electron receptor was higher than that with when the initial concentration of either or was 40 mg/L.

关键词: wastewater treatment     anaerobic-anoxic (A2/O)     oxidation ditch (OD)     biological phosphorus removal     denitrifying phosphorus removal    

Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration

Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng

《环境科学与工程前沿(英文)》 2018年 第12卷 第5期 doi: 10.1007/s11783-018-1084-1

摘要:

A novel two sludge pre-A2NSBR system was developed.

Advanced N and P removal was optimized to treat real domestic wastewater.

Nitrifiers and PAOs were enriched with 19.41% and 26.48%, respectively.

Acetate was demonstrated as the high-quality carbon source type.

关键词: Denitrifying phosphorus removal     C/N ratio     Nitrate recycling     Carbon source type     Biological nutrient removal     Pre-A2NSBR system    

Occurrence and removal of

Lin WANG,Yongmei LI,Xiaoling SHANG,Jing SHEN

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 519-530 doi: 10.1007/s11783-013-0610-4

摘要: Six wastewater treatment plants (WWTPs) were investigated to evaluate the occurrence and removal of -nitrosodimethylamine (NDMA), NDMA formation potential (FP) and four specific NDMA precursors, dimethylamine (DMA), trimethylamine (TMA), dimethylformamide (DMFA) and dimethylaminobenzene (DMAB). DMA and tertiary amines with DMA functional group commonly existed in municipal wastewater. Chemically enhanced primary process (CEPP) had no effect on removal of either NDMA or NDMA FP. In WWTPs with secondary treatment processes, considerable variability was observed in the removal of NDMA (19%–85%) and NDMA FP (16%–76%), moreover, there was no definite relationship between the removal of NDMA and NDMA FP. DMA was well removed in all the six surveyed WWTPs; its removal efficiency was greater than 97%. For the removal of tertiary amines, biologic treatment processes with nitrification and denitrification had better removal efficiency than conventional activated sludge process. The best removal efficiencies for TMA, DMFA and DMAB were 95%, 68% and 72%, respectively. CEPP could remove 73% of TMA, 23% of DMFA and 36% of DMAB. After UV disinfection, only 17% of NDMA was removed due to low dosage of UV was applied in WWTP. Although chlorination could reduce NDMA precursors, NDMA concentration was actually increased after chlorination.

关键词: N-nitrosodimethylamine     NDMA precursors     NDMA formation potential     biological treatment process     chemically enhanced primary process    

Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR

Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1085-8

摘要: To enhance phosphorus removal and make the effluent meet the strict discharge level of total phosphorus (TP, 0.5 mg/L), flocculant dosing is frequently applied. In this study, the performance of aluminum sulfate dosing in a University of Cape Town Membrane Bioreactor (UCT-MBR) was investigated, in terms of the nutrients removal performance, sludge characteristics and membrane fouling. The results indicated that the addition of aluminum sulfate into the aerobic reactor continuously had significantly enhanced phosphorus removal. Moreover, COD, NH -N and TN removal were not affected and effluent all met the first level A criteria of GB18918-2002. In addition, the addition of aluminum sulfate had improved the sludge activity slightly and reduced trans-membrane pressure (TMP) increase rate from 1.13 KPa/d to 0.57 KPa/d effectively. The membrane fouling was alleviated attributed to the increased average particle sizes and the decreased accumulation of the small sludge particles on membrane surface. Furthermore, the decline of extracellular polymeric substance (EPS) concentration in mixed sludge liquid decreased its accumulation on membrane surface, resulting in the mitigation of membrane fouling directly.

关键词: University of Cape Town Bioreactor (UCT-MBR)     enhanced nutrients removal     aluminum sulfate     sludge activity     membrane fouling    

On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencing

LI Jun, NI Yongjiong, WEI Su, CHENG Guobiao, OU Changjin, PENG Yongzhen, GU Guowei, LU Jingen

《环境科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 99-102 doi: 10.1007/s11783-008-0017-9

摘要: The objectives of this study were to establish an on-line controlling system for nitrogen and phosphorus removal synchronously of municipal wastewater in a sequencing batch reactor (SBR). The SBR for municipal wastewater treatment was operated in sequences: filling, anaerobic, oxic, anoxic, oxic, settling and discharge. The reactor was equipped with on-line monitoring sensors for dissolved oxygen (DO), oxidation-reduction potential (ORP) and pH. The variation of DO, ORP and pH is relevant to each phase of biological process for nitrogen and phosphorus removal in this SBR. The characteristic points of DO, ORP and pH can be used to judge and control the stages of process that include: phosphate release by the turning points of ORP and pH; nitrification by the ammonia valley of pH and ammonia elbows of DO and ORP; denitrification by the nitrate knee of ORP and nitrate apex of pH; phosphate uptake by the turning point of pH; and residual organic carbon oxidation by the carbon elbows of DO and ORP. The controlling system can operate automatically for nitrogen and phosphorus efficiently removal.

关键词: DO     relevant     biological process     nitrogen     pH    

Advanced nitrogen and phosphorus removal in A

Jianhua WANG, Yongzhen PENG, Yongzhi CHEN

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 474-480 doi: 10.1007/s11783-011-0360-0

摘要: A laboratory-scale anaerobic-anoxic-aerobic process (A O) with a small aerobic zone and a bigger anoxic zone and biologic aerated filter (A O-BAF) system was operated to treat low carbon-to-nitrogen ratio domestic wastewater. The A O process was employed mainly for organic matter and phosphorus removal, and for denitrification. The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A O process, the suspended activated sludge in this A O-BAF process contained small quantities of nitrifier, but nitrification overwhelmingly conducted in BAF. So the system successfully avoided the contradiction in sludge retention time (SRT) between nitrifying bacteria and phosphorus accumulating organisms (PAOs). Denitrifying phosphorus accumulating organisms (DPAOs) played an important role in removing up to 91% of phosphorus along with nitrogen, which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance. The average removal efficiency of chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and were 85.56%, 92.07%, 81.24% and 98.7% respectively. The effluent quality consistently satisfied the national first level A effluent discharge standard of China. The average sludge volume index (SVI) was 85.4 mL·g additionally, the volume ratio of anaerobic, anoxic and aerobic zone in A O process was also investigated, and the results demonstrated that the optimum value was 1∶6∶2.

关键词: Anoxic zone and biologic aerated filter (A2O-BAF) system     domestic wastewater with low carbon-to-nitrogen ratio     advanced nitrogen and phosphorus removal     denitrifying phosphorus removal    

Practical consideration for design and optimization of the step feed process

Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 135-142 doi: 10.1007/s11783-012-0454-3

摘要: Based on the anoxic/oxic (A/O) step feed process, a modified University of Cape Town (UCT) step feed process was developed by adding an anaerobic zone and adjusting sludge return pipeline. Performance evaluation of these two types of processes was investigated by optimizing operational parameters, such as the anaerobic/anoxic/oxic volumes, internal recycle ratios, and sludge retention times, for removal of chemical oxygen demanding (COD), nitrogen, and phosphorus. Results showed high removal efficiencies of COD of (85.0±1.7)%, ammonium of (99.7±0.2)%, total nitrogen (TN) of (85.5±1.7)%, phosphorus of (95.1±3.3)%, as well as excellent sludge settleability with average sludge volume index of (83.7±9.5) L·mg in the modified UCT process. Moreover, (61.5±6.0)% of influent COD was efficiently involved in denitrification or phosphorus release process. As much as 35.3% of TN was eliminated through simultaneous nitrification and denitrification process in aerobic zones. In addition, the presence of denitrifying phosphorus accumulating organisms (DNPAOs), accounting for approximately 39.2% of PAOs, was also greatly beneficial to the nitrogen and phosphorus removal. Consequently, the modified UCT step feed process was more attractive for the wastewater treatment plant, because it had extremely competitive advantages such as higher nutrient removal efficiencies, lower energy and dosages consumption, excellent settling sludge and operational assurance.

关键词: step feed     anoxic/oxic (A/O)     University of Cape Town (UCT)     simultaneous nitrification and denitrification (SND)     denitrifying phosphorus removal     biological nutrient removal (BNR)    

Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment

Xuguang TANG, Shuying WANG, Yongzhen PENG

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 475-481 doi: 10.1007/s11783-010-0244-8

摘要: The characteristic of phosphorus removal and appropriate change of the traditional operation modes were investigated in UniFed sequencing batch reactor (SBR) laboratory-scale apparatus (40 L), treating actual domestic wastewater with low ratios of C/N (2.57) and C/P (30.18), providing theoretical basis for actual application of wastewater treatment plant. UniFed SBR system with its unique operation mode had the distinct superiority of phosphorus removal. On this occasion, the effect of volumetric exchange ratio (VER) and the method of influent introduction for phosphorus removal were studied. When the carbon source became the limiting factor to phosphorus release, the higher the VER, the lower the phosphorus concentration in the effluent. Three different influent patterns, including one-time filling, four-time filling, and continuous filling with the same quantity of wastewater could increase the release rate of anaerobic phosphorus from 0.082 to 0.143 mg·P·(L·min) . Appropriate change of the traditional operation modes could optimize the efficiency of phosphorus removal. When the feed/ decant time was extended from 2 h to 4 h, the phosphorous removal efficiency increased from 59.93% to 88.45% without any external carbon source. In the mode of alternation of anoxic-aerobic (A/O) condition, phosphorous removal efficiency increased from 55.07% to 72.27% clearly. The carbon source in the influent can be used adequately, and denitrifying phosphorus removal was carried out in anoxic stage 2 (A2). This mode was optimal for the treatment of actual domestic wastewater with low C/N and C/P ratios.

关键词: UniFed sequencing batch reactor (SBR)     phosphorus removal     volumetric exchange ratio (VER)     alternation of anoxic-aerobic (A/O)     domestic wastewater    

Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars

Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-020-1225-1

摘要: • Orange tree residuals biochar had a better ability to adsorb ammonia. • Modified tea tree residuals biochar had a stronger ability to remove phosphorus. • Partially-modified biochar could remove ammonia and phosphorus at the same time. • The real runoff experiment showed an ammonia nitrogen removal rate of about 80%. • The removal rate of total phosphorus in real runoff experiment was about 95%. Adsorption of biochars (BC) produced from cash crop residuals is an economical and practical technology for removing nutrients from agricultural runoff. In this study, BC made of orange tree trunks and tea tree twigs from the Laoguanhe Basin were produced and modified by aluminum chloride (Al-modified) and ferric sulfate solutions (Fe-modified) under various pyrolysis temperatures (200°C–600°C) and residence times (2–5 h). All produced and modified BC were further analyzed for their abilities to adsorb ammonia and phosphorus with initial concentrations of 10–40 mg/L and 4–12 mg/L, respectively. Fe-modified Tea Tree BC 2h/400°C showed the highest phosphorus adsorption capacity of 0.56 mg/g. Al-modified Orange Tree BC 3h/500°C showed the best performance for ammonia removal with an adsorption capacity of 1.72 mg/g. FTIR characterization showed that P = O bonds were formed after the adsorption of phosphorus by modified BC, N-H bonds were formed after ammonia adsorption. XPS analysis revealed that the key process of ammonia adsorption was the ion exchange between K+ and NH4+. Phosphorus adsorption was related to oxidation and interaction between PO43– and Fe3+. According to XRD results, ammonia was found in the form of potassium amide, while phosphorus was found in the form of iron hydrogen phosphates. The sorption isotherms showed that the Freundlich equation fits better for phosphorus adsorption, while the Langmuir equation fits better for ammonia adsorption. The simulated runoff infiltration experiment showed that 97.3% of ammonia was removed by Al-modified Orange tree BC 3h/500°C, and 92.9% of phosphorus was removed by Fe-modified Tea tree BC 2h/400°C.

关键词: Biochar     Adsorption     Ammonia removal     Phosphorus removal     Agricultural runoff    

标题 作者 时间 类型 操作

Tetrasphaera富集的强化生物除磷微生物组的时间动态和效能关联

王慧, 王玉波, 张国庆, 赵泽, 鞠峰

期刊论文

effect of temperature variation on the competition between PAOs and GAOs during acclimation period of an EBPR

Nanqi REN, Han KANG, Xiuheng WANG, Nan LI

期刊论文

Kinetic analysis of anaerobic phosphorus release during biological phosphorus removal process

DOU Junfeng, LIU Xiang, LUO Guyuan

期刊论文

Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by

Yandong Yang,Liang Zhang,Hedong Shao,Shujun Zhang,Pengchao Gu,Yongzhen Peng

期刊论文

Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies

Bin MA, Shuying WANG, Guibing ZHU, Shijian GE, Junmin WANG, Nanqi Ren, Yongzhen PENG

期刊论文

Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorusremoval in low dissolved oxygen systems

Hongjing LI, Yinguang CHEN

期刊论文

Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process

Hongxun HOU, Shuying WANG, Yongzhen PENG, Zhiguo YUAN, Fangfang YIN, Wang GAN

期刊论文

Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration

Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng

期刊论文

Occurrence and removal of

Lin WANG,Yongmei LI,Xiaoling SHANG,Jing SHEN

期刊论文

Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR

Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang

期刊论文

On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencing

LI Jun, NI Yongjiong, WEI Su, CHENG Guobiao, OU Changjin, PENG Yongzhen, GU Guowei, LU Jingen

期刊论文

Advanced nitrogen and phosphorus removal in A

Jianhua WANG, Yongzhen PENG, Yongzhi CHEN

期刊论文

Practical consideration for design and optimization of the step feed process

Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG

期刊论文

Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment

Xuguang TANG, Shuying WANG, Yongzhen PENG

期刊论文

Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars

Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev

期刊论文